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Abstract Recently, He et al. proposed a modified Peaceman–Rachford splitting
method (MPRSM) for separable convex programming, which includes compressive
sensing (CS) as a special case. In this paper, we further study MPRSM for CS, and
regularize its first subproblem by the proximal regularization. Thus the computational
load of the subproblem is substantially alleviated. That is, it is easy enough to have a
closed-form solution for CS. Convergence of the newmethod can be guaranteed under
the same assumptions as MPRSM. Finally, numerical results, including comparisons
with MPPSM are reported to demonstrate the efficiency of the new method.

Keywords Proximal Peaceman–Rachford splitting method · Compressive sensing ·
Global convergence

Mathematics Subject Classfication 90C25 · 90C30

1 Introduction

Compressive sensing (CS) is to recover a sparse signal x̄ ∈ Rn from an undetermined
linear system y = Ax̄ , where A ∈ Rm×n (m � n) is the sensing matrix, and a funda-
mental decoding model in CS is the so-called unconstrained basis pursuit denoising
(QPμ) problem, which can be depicted as
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min
x∈Rn

1

2
‖Ax − y‖22 + μ‖x‖1, (1)

where μ > 0 is the regularization parameter and ‖x‖1 is the l1-norm of the vector x
defined as ‖x‖1 = ∑n

i=1 |xi |. Throughout this paper, we assume that the solution set
of (1) is nonempty.

It is obviously that QPμ is a special case of the famous separable convex program-
ming, which is studied intensively by many researchers [4,10–12]. In fact, by setting
x1 = x, x2 = x , we can reformulate (1) as

min
1

2
‖Ax1 − y‖22 + μ‖x2‖1

s.t. x1 − x2 = 0,
x1 ∈ Rn, x2 ∈ Rn .

(2)

Thus, all the numerical methods which can solve the separable convex programming
are applicable to the aboveQPμ, including the inexact/linearized alternating directions
method[6,7], the Peaceman–Rachford splitting method (PRSM) of multipliers[3,4],
etc. In this paper, we are going to study the PRSM for CS.

Applying the PRSM [1,2] to (2), Bertsekas [3] obtained an iterative scheme of
PRSM for (1), which is always efficient when it is convergent. However, according
to [3], it “is less ‘robust’ in that it converges under more restrictive assumptions
than alternating direction method of multipliers (ADMM)”. Here, ADMM is another
efficient method for (1) [6–8]. To guarantee the convergence of PPSM in [3] under
mild conditions, He et al. [4] developed a modified Peaceman–Rachford splitting
method (MPRSM) by attaching an underdetermined relaxation factor α to the penalty
parameter β in the steps of Lagrange multiplier updating, and yield the following
iterative scheme

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xk+1
1 = (A�A + β I )−1(A�y + βxk2 + λk),

λk+ 1
2 = λk − αβ(xk+1

1 − xk2 ),

xk+1
2 = shrink μ

β
(xk+1

1 − 1
β
λk+ 1

2 ),

λk+1 = λk+ 1
2 − αβ(xk+1

1 − xk+1
2 ),

(3)

where the parameter α ∈ (0, 1), β > 0 is a penalty parameter, and for any c > 0,
shrinkc(·) is the soft-thresholding operator defined as

shrinkc(g) : = g − min{c, |g|} g

|g| ,∀g ∈ Rn,

and (g/|g|)i should be taken 0 if |g|i = 0. The global convergence of MPRSM
can be guaranteed under some standard assumptions and its efficiency was verified
numerically in [4].

Obviously, MPRSM has a shortcoming. That is we need to compute the matrix
(A�A + β I )−1, where A ∈ Rm×n is the sensing matrix and I is the identity matrix,
which is quite time consuming when the dimension n is large. In order to solve this
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issue, motivated the linearized ADMM in [5–7,9], we propose a proximal Peaceman–
Rachford splitting method (PPRSM), whose main idea is to regularize the equivalent
minimization problem of x1’s iterative scheme in (3) by the proximal regularization
1
2‖x1 − xk1‖2R . Here R ∈ Rn×n is defined as R = 1

τ
In − A�A, where the parameter τ

is restricted to τ ∈ (0, 1/λmax(A�A)) to ensure that R is a positive definite matrix. By
doing so, the proposed PPRSM does not need to compute the matrix (A�A + β I )−1.

The paper is organized as follows. In Sect. 2, we characterize problem (2) by a
mixed variational inequality problem and summarize some useful preliminaries. In
Sect. 3, we describe the PPRSM for CS and prove its global convergence in detail. In
Sect. 4, some numerical experiments and comparisons with MPRSM in CS are given
to illustrate the efficiency of the proposed method. Finally, some concluding remarks
are drawn in Sect. 5.

2 Preliminaries

In this section, we characterize problem (2) by a mixed variational inequality problem
and summarize some preliminaries which are useful for further discussions.

First, we define some auxiliary variables and functions: x = (x1, x2), w = (x, λ),
θ1(x) = 1

2‖Ax1 − y‖22, θ2(x) = μ‖x2‖1 and θ(x) = θ1(x) + θ2(x). Then, by invok-
ing the first-order optimality condition for convex programming, we can reformu-
late problem (2) as the following mixed variational inequality problem (denoted by
MVI(W, F, θ)): Finding a vector w∗ ∈ W such that

θ(x) − θ(x∗) + (w − w∗)�F(w∗) ≥ 0, ∀w ∈ W, (4)

where W = Rn × Rn × Rn , and

w =
(
x
λ

)

=
⎛

⎝
x1
x2
λ

⎞

⎠ and F(w) =
⎛

⎝
−λ

λ

x1 − x2

⎞

⎠. (5)

Since the mapping F(w) defined in (5) is affine with a skew-symmetric matrix, it
is monotone. We denote by W∗ the set of such w∗ that satisfies (4). Then, W∗ is
nonempty under nonempty assumption onto the solution set of problem (1).

Now, let us define some matrices in order to present our analysis in a compact way.
Let

M =
⎛

⎝
In 0 0
0 In 0
0 αβ In 2α In

⎞

⎠ , and Q =
⎛

⎝
R 0 0
0 β In α In
0 In

1
β
In

⎞

⎠, (6)

where R ∈ Rn×n is the positive definite matrix defined in the introduction. Then, let

H =
⎛

⎝
R 0 0
0 2−α

2 β In
1
2 In

0 1
2 In

1
2αβ

In

⎞

⎠. (7)
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The matrices M, Q, H just defined satisfy the following properties.

Lemma 2.1 (1) The matrices M, Q, H defined, respectively, in (6), (7) have the fol-
lowing relationship:

HM = Q. (8)

(2) The matrix H defined in (7) is positive definite.

Proof (1) By (6) and (7), we have

HM =

⎛

⎜
⎜
⎝

R 0 0

0 2−α
2 β In

1
2 In

0 1
2 In

1
2αβ

In

⎞

⎟
⎟
⎠

⎛

⎜
⎝

In 0 0
0 In 0

0 αβ In 2α In

⎞

⎟
⎠

=
⎛

⎜
⎝

R 0 0

0 β In α In

0 In
1
β
In

⎞

⎟
⎠ = Q.

Then the first assertion is proved.
(2) Since R is a positive definite matrix, there exists positive definite matrix R1 ∈

Rn×n , such that R = R�
1 R1. By a simple manipulation, we obtain

H =

⎛

⎜
⎜
⎝

R�
1 0 0

0 −√
β In 0

0 0 1√
β
In

⎞

⎟
⎟
⎠

⎛

⎜
⎝

In 0 0

0 2−α
2 In

1
2 In

0 1
2 In

1
2α In

⎞

⎟
⎠

⎛

⎜
⎜
⎝

R1 0 0

0 −√
β In 0

0 0 1√
β
In

⎞

⎟
⎟
⎠ .

Since the matrix

⎛

⎜
⎝

1 0 0

0 2−α
2

1
2

0 1
2

1
2α

⎞

⎟
⎠

is positive definite if α ∈ (0, 1), H is also positive definite. The proof is complete.

�

3 Algorithm and global convergence

In this section, we further describe our motivation and then present the PPRSM for
MVI(W, F, θ). We also establish the new method’s global convergence in a contrac-
tion perspective in this section.

The equivalent minimization problem of x1’s iterative scheme in MPRSM (3) is as
follows

xk+1
1 = argminx1∈Rn

{
1

2
‖Ax1 − y‖22 − (λk)�x1 + β

2
‖x1 − xk2‖2

}

, (9)
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and its closed-form solution is just the x1’s iterative scheme in MPRSM (3)

xk+1
1 = (A�A + β In)

−1(A�y + λk + βxk2 ).

However, as pointed in the introduction, the computation of (A�A + β In)−1 is very
time consuming when n is large. Then, we linearize 1

2‖Ax1 − y‖22 at the current point
xk1 and add a proximal term, i.e.,

1

2
‖Ax1 − y‖22
≈ 1

2
‖Axk1 − y‖22 + (gk)�(x1 − xk1 ) + 1

2τ
‖x1 − xk1‖2,

where gk = A�(Axk1 − y) denotes the gradient at xk1 , and τ > 0 is a parameter. Thus,
(9) is approximated by the following problem

xk+1
1 = argminx1∈Rn

{
1

2
‖Axk1 − y‖22 + (gk)�(x1 − xk1 )

+ 1

2τ
‖x1 − xk1‖2 − (λk)�x1 + β

2
‖x1 − xk2‖2

}

,

which can be written as

xk+1
1 = argminx1∈Rn

{

(gk)�x1 + 1

2τ
‖x1 − xk1‖2 − (λk)�x1 + β

2
‖x1 − xk2‖2

}

.

(10)
Obviously, the above minimization problem has the following closed-form solution

xk+1
1 = τ

1 + βτ

(

λk + 1

τ
xk1 + βxk2 − gk

)

. (11)

In the following, we show that (10) is exactly the x1-subproblem of (9) regularized
by the proximal regularization 1

2‖x1 − xk1‖2R with R = 1
τ
In − A�A. In fact, if we

regularize the x1-subproblem of (9) by 1
2‖x1 − xk1‖2R , then we get

argminx1∈Rn

{
1

2
‖Ax1 − y‖22 − (λk)�x1 + β

2
‖x1 − xk2‖2 + 1

2
‖x1 − xk1‖21

τ
In−A�A

}

= argminx1∈Rn

{
1

2
‖Ax1 − y‖22 − (λk)�x1 + β

2
‖x1 − xk2‖2

+1

2
(x1 − xk1 )

�
(
1

τ
In − A�A

)

(x1 − xk1 )

}

= argminx1∈Rn

{
1

2
‖Ax1 − y‖22 − (λk)�x1 + β

2
‖x1 − xk2‖2

+ 1

2τ
‖x1 − xk1‖2 − 1

2
‖Ax1 − Axk1‖2

}
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= argminx1∈Rn

{
(x1)

�A�(Axk1 − y) − (λk)�x1

+ β

2
‖x1 − xk2‖2 + 1

2τ
‖x1 − xk1‖2

}

.

The last expression is just (10). Now, we describe our new method for CS in detail.

Algorithm 3.1 PPRSM
Step 0. Choose the parameters α ∈ (0, 1), β > 0, 0 < τ < 1/λmax(A�A), the

tolerance ε > 0 and the initial iterate (x01 , x
0
2 , λ

0) ∈ W . Set R = 1
τ
In − A�A and

k := 0.
Step 1. Generate the new iterate wk+1 = (xk+1

1 , xk+1
2 , λk+1) by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = argminx1∈Rn

{
θ1(x1) − (λk)�x1 + β

2 ‖x1 − xk2‖2 + 1
2‖x1 − xk1‖2R

}
,

λk+ 1
2 = λk − αβ

(
xk+1
1 − xk2

)
,

xk+1
2 = argminx2∈Rn

{

θ2(x2) +
(
λk+ 1

2

)�
x2 + β

2 ‖xk+1
1 − x2‖2

}

,

λk+1 = λk+ 1
2 − αβ

(
xk+1
1 − xk+1

2

)
,

(12)
Step 2. If

max
{
‖xk1 − xk+1

1 ‖, ‖xk2 − xk+1
2 ‖, ‖λk − λk+1‖

}
< ε, (13)

then stop and return an approximate solution (xk+1
1 , xk+1

2 , λk+1) of MVI(W, F, θ );
else set k := k + 1, and goto Step 1.

For further analysis, similar to [4], we also define an auxiliary sequence {ŵk} as

ŵk =
⎛

⎝
x̂ k1
x̂ k2
λ̂k

⎞

⎠ =
⎛

⎝
xk+1
1
xk+1
2

λk − β(xk+1
1 − xk2 )

⎞

⎠. (14)

Thus, from [4], we also get

λk+
1
2 = λk − α(λk − λ̂k), and λk+1 = λk −

[
2α(λk − λ̂k) + αβ(xk2 − x̂ k2 )

]
,

which together with (6) and (14) shows that

wk+1 = wk − M(wk − ŵk). (15)

Now, we start to prove the global convergence of PPRSM, and firstly we show the
stopping criterion (13) is reasonable.

Lemma 3.1 If xki = xk+1
i (i = 1, 2) and λk = λk+1, thenwk+1 = (xk+1

1 , xk+1
2 , λk+1)

produced by PPRSM is a solution of MVI(W, F, θ ).

123



www.manaraa.com

A PPRSM for CS 355

Proof By deriving the first-order optimality condition of x1-subproblem in (12), for
any x1 ∈ Rn , we have

θ1(x1) − θ1(x
k+1
1 ) + (x1 − xk+1

1 )�
{−λk + β(xk+1

1 − xk2 ) + R(xk+1
1 − xk1 )

} ≥ 0.

By the definition of λ̂k in (14), the above inequality can be written as

θ1(x1) − θ1(x
k+1
1 ) + (x1 − xk+1

1 )�
{ −λ̂k + R(xk+1

1 − xk1 )
} ≥ 0,∀x1 ∈ Rn . (16)

Similarly, from the x2-subproblem in (12), we have

θ2(x2)−θ2(x
k+1
2 )+(x2− xk+1

2 )�
{
λ̂k + β(xk+1

2 − xk2 ) + α(λ̂k − λk)
}≥0,∀x2∈Rn .

(17)
In addition, follows from (14) again, we have

(xk+1
1 − xk+1

2 ) + (xk+1
2 − xk2 ) + 1

β
(λ̂k − λk) = 0. (18)

Then, combining (16)–(18) and xk+1
i = x̂ ki (i = 1, 2), for any w = (x1, x2, λ) ∈ W ,

it holds that

θ(x) − θ(x̂ k)+(w − ŵk)�
⎧
⎨

⎩

⎛

⎝
−λ̂k

λ̂k

x̂k1 − x̂ k2

⎞

⎠ +
⎛

⎝
R(x̂ k1 − xk1 )

β(x̂ k2 − xk2 ) + α(λ̂k − λk)

(x̂ k2 − xk2 ) + (λ̂k − λk)/β

⎞

⎠

⎫
⎬

⎭
≥ 0.

Then, recall the definition of Q in (6), the above inequality can be written as

θ(x) − θ(x̂ k) + (w − ŵk)�F(ŵk) ≥ (w − ŵk)�Q(wk − ŵk), (19)

for any w ∈ W . In addition, if xki = xk+1
i (i = 1, 2) and λk = λk+1, then we have

xki = x̂ ki (i = 1, 2) and λk = λ̂k . Thus,

Q(wk − ŵk) = 0,

which together with (19) shows that

θ(x) − θ(x̂ k) + (w − ŵk)�F(ŵk) ≥ 0, ∀w ∈ W.

This implies that ŵk = (x̂ k1 , x̂
k
2 , λ̂

k) is a solution ofMVI(W, F, θ ). Since ŵk = wk+1,
therefore wk+1 is also a solution of MVI(W, F, θ ). This completes the proof. 
�

Now, we deal with the right-hand side of (19), and we want to find a lower bound
in terms of the discrepancy between ‖w − wk+1‖2H and ‖w − wk‖2H for any w ∈ W .
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Lemma 3.2 Let the sequence {wk} be generated by PPRSM. Then, for any w ∈ W ,
we have

(w− ŵk)�Q(wk − ŵk) ≥ 1

2

(
‖w−wk+1‖2H −‖w−wk‖2H

)
+ 1

2
‖wk − ŵk‖2N , (20)

where

N =
⎛

⎜
⎝

R 0 0
0 β(1−α)

4 In 0
0 0 2(1−α)

3β Il

⎞

⎟
⎠.

Proof Applying the identity

(a − b)�H(c − d) = 1

2

(
‖a − d‖2H − ‖a − c‖2H

)
+ 1

2

(
‖c − b‖2H − ‖d − b‖2H

)
,

with

a = w, b = ŵk, c = wk, d = wk+1,

we obtain

(w − ŵk)�H(wk − wk+1) = 1

2

(
‖w − wk+1‖2H − ‖w − wk‖2H

)

+1

2

(
‖wk − ŵk‖2H − ‖wk+1 − ŵk‖2H

)
.

Combining the above equality, (8) and (15), we have

(w − ŵk)�Q(wk − ŵk) = 1

2

(
‖w − wk+1‖2H − ‖w − wk‖2H

)

+1

2

(
‖wk − ŵk‖2H − ‖wk+1 − ŵk‖2H

)
. (21)

For the last term of (21), we have

‖wk − ŵk‖2H − ‖wk+1 − ŵk‖2H
= ‖wk − ŵk‖2H − ‖(wk − ŵk) − (wk − wk+1)‖2H
= ‖wk − ŵk‖2H − ‖(wk − ŵk) − M(wk − ŵk)‖2H (Using(15))

= 2(wk − ŵk)�HM(wk − ŵk) − (wk − ŵk)�M�HM(wk − ŵk)

= (wk − ŵk)(Q� + Q − M�HM)(wk − ŵk). (22)

Then, by (6)–(8) and a simple manipulation, we can get
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Q� + Q − M�HM = Q� + Q − M�Q =
⎛

⎝
R 0 0
0 (1 − α)β In (1 − α)In
0 (1 − α)In

2(1−α)
β

In

⎞

⎠.

Thus, it follows from the Cauchy–Schwartz Inequality that

(wk − ŵk)(Q� + Q − M�HM)(wk − ŵk)

= ‖xk1− x̂ k1‖2R+(1 − α)

{

β‖xk2 − x̂ k2‖2+2(xk2 − x̂ k2 )
�(λk − λ̂k) + 2

β
‖λk − λ̂k‖2

}

= ‖xk1 − x̂ k1‖2R + (1 − α)

{
β

4
‖xk2 − x̂ k2‖2 + 2

3β
‖λk − λ̂k‖2

3β

4
‖xk2 − x̂ k2‖2 + 2(xk2 − x̂ k2 )

�(λk − λ̂k) + 4

3β
‖λk − λ̂k‖2

}

≥ ‖xk1 − x̂ k1‖2R + (1 − α)

{
β

4
‖xk2 − x̂ k2‖2 + 2

3β
‖λk − λ̂k‖2

}

= ‖wk − ŵk‖2N .

Then, the above inequality and (22) indicate that

‖wk − ŵk‖2H − ‖wk+1 − ŵk‖2H ≥ ‖wk − ŵk‖2N .

Substituting this inequality into (21), we can get (20). The proof is complete. 
�
Theorem 3.1 Let {wk} be the sequence generated by PPRSM. Then, for any w ∈ W ,
we have

θ(x)−θ(x̂ k)+(w−ŵk)�F(w) ≥ 1

2
(‖w−wk+1‖2H −‖w−wk‖2H )+ 1

2
‖wk −ŵk‖2N .

(23)

Proof First, combining (19) and (20), we get

θ(x)−θ(x̂ k)+(w−ŵk)�F(ŵk) ≥ 1

2
(‖w−wk+1‖2H −‖w − wk‖2H )+ 1

2
‖wk−ŵk‖2N .

From the monotonicity of F(·), we have

(w − ŵk)�(F(w) − F(ŵk)) ≥ 0.

Adding the above two inequalities, we obtain the assertion (23). Hence, the theorem
is proved. 
�
With the above theorem, we are now ready to establish the global convergence of
PPRSM for solving MVI(W, F, θ ).

Theorem 3.2 Let {wk} be the sequence generated by PPRSM. Then, the sequence
{wk} converges to some w∞, which belongs toW∗.

123



www.manaraa.com

358 M. Sun, J. Liu

Proof Setting w = w∗ in (23), we have

‖wk − w∗‖2H − ‖wk − ŵk‖2N
≥ 2{θ(x̂ k) − θ(x∗) + (ŵk − w∗)�F(w∗)} + ‖wk+1 − w∗‖2H
≥ ‖wk+1 − w∗‖2H ,

where the second inequality follows from w∗ ∈ W∗. Thus, we have

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H − ‖wk − ŵk‖2N . (24)

Summing over k = 0, 1, . . . ,∞, it yields

∞∑

k=0

‖wk − ŵk‖2N ≤ ‖w0 − w∗‖2H ,

which implies that
lim
k→∞ ‖wk − ŵk‖N = 0. (25)

This indicates that

lim
k→∞ ‖xk1 − x̂ k1‖ = 0, lim

k→∞ ‖xk2 − x̂ k2‖ = 0, and lim
k→∞ ‖λk − λ̂k‖ = 0.

This together with the definition of Q implies that

lim
k→∞ Q(wk − ŵk) = 0.

Then, by (19), we can get

lim
k→∞

{
θ(x) − θ(x̂ k) + (w − ŵk)�F(ŵk)

}
≥ 0, ∀w ∈ W. (26)

On the other hand, from (24) again, we have

‖wk+1 − w∗‖2H ≤ ‖w0 − w∗‖2H ,

which indicates that the sequence {wk} is bounded. Then, from (25), the sequence
{ŵk} is also bounded. Therefore, it has at least one cluster point. Let w∞ be a cluster
point of {ŵk} and the subsequence {ŵk j } converges to w∞. It follows from (26) that

θ(x) − θ(x∞) + (w − w∞)�F(w∞) ≥ 0, ∀w ∈ W,

which implies that w∞ ∈ W∗. From limk→∞ ‖wk − ŵk‖N = 0, we can deduce
limk→∞ ‖wk − ŵk‖H = 0, which together with {ŵk j } → w∞ implies that, for any
given ε > 0, there exists an integer l, such that
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‖wkl − ŵkl‖H <
ε

2
, and ‖ŵkl − w∞‖H <

ε

2
.

Therefore, for any k ≥ kl , it follows from the above two equalities and (24) that

‖wk − w∞‖H ≤ ‖wkl − w∞‖H ≤ ‖wkl − ŵkl‖H + ‖ŵkl − w∞‖H < ε.

This shows that the sequence {wk} converges tow∞ ∈ W∗. This completes the proof.
�

4 Numerical experiments

In this section, we conduct some numerical experiments about CS to verify the effi-
ciency of the proposed PPRSM, and compared it with the MPRSM in [4]. All the code
were written by Matlab 7.0 and were performed on a ThinkPad computer equipped
with Windows XP, 2.60GHz and 1.96 GB of memory.

Obviously, for CS, (12) in PPRSM can be written in the following compact form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xk+1
1 = τ

1+βτ
(λk + 1

τ
xk1 + βxk2 − gk),

λk+ 1
2 = λk − αβ(xk+1

1 − xk2 ),

xk+1
2 = shrink μ

β
(xk+1

1 − 1
β
λk+ 1

2 ),

λk+1 = λk+ 1
2 − αβ(xk+1

1 − xk+1
2 ),

(27)

where gk = A�(Axk1 − y).
For two methods, the stop criterion is

‖ fk − fk−1‖
‖ fk−1‖ < 10−5,

where fk denotes the objective function value of (1) at iteration xk . All the initial
points are set as A�y, and we set n = 1000,m = floor(γ × n), k = floor(σ × m),
where k is the number of random nonzero elements contained in the original signal.
In addition, we set μ = 0.01, α = 0.9, and the sensing matrix A is generated by:

B = randn(m, n), [Q, R] = qr(B�, 0), A = Q�.

4.1 Sensitivity to τ

In this subsection, we are going to test the sensitivity of τ for the PPRSM (27). We
set γ = 0.3, σ = 0.2, y = Ax̄ + sw, where sw is the additive Gaussian white noise of
zero mean and standard derivation 0.01, and β = mean(|y|). Define

RelErr = ‖x̃ − x̄‖
‖x̄‖ ,

123



www.manaraa.com

360 M. Sun, J. Liu

0.5 1 1.5 2

2

4

6

8

τ

Ti
m

e
Convergence time with different τ

0.5 1 1.5 2

500

1000

1500

2000

2500

τ

Ite
r

Numbers of iterations with different τ

0.5 1 1.5 2
0.04

0.05

0.06

0.07

0.08

0.09

τ

R
el

Er
r

The final relative errors with different τ

0.5 1 1.5 2
0.4

0.42

0.44

0.46

0.48

0.5

0.52

τ

Fu
n

The final objective function values with different τ

Fig. 1 Sensitivity test on the parameter τ

where x̃ denotes the reconstructive signal. We choose different values of τ in the
interval [0.1, 2]. More specifically, we choose τ = {0.1, 0.2, . . . , 2}. The computing
time (denoted by Time) in seconds, the numbers of iterations (denoted by Iter), the
RelErr, and the objective function value (denoted by Fun) generated by the PPRSM
(27) are recorded for each choice of τ . Then, we plot them in Fig. 1. According to the
two top curves in Fig. 1, we see that the parameter τ works well when τ ≥ 0.5. In
addition, Time and Iter have decreasing tendency when τ increases. However, other
numerical results indicate that τ that bigger than 2 often leads to poor numerical
performance. Therefore, based on our experiments, some values close to 2, such as
[1.8, 2], are preferred. In the following, we set τ = 2.

4.2 Test on additive Gaussian white noise

In this subsection, we use PPRSM to recover a simulated sparse signal from the
observation data corrupted by additive Gaussian white noise. Here, parameter val-
ues are set just the same to the previous. The original signal, the measurement and
the reconstructed signal by PPRSM are given in Fig. 2. Compared the first and
the last plots in Fig. 1, we clearly see that the original signal is recovered almost
exactly. In addition, the RelErr=4.92%, the computing time is 0.7810, the number
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Fig. 2 The original signal, noisy measurement and reconstruction results

of iteration is 143. All together, this simple experiment shows that PPRSM works
well.

4.3 Test on PPRSM and MPRSM

In this subsection, we compare PPRSM with MPRSM with respect to the RelErr, the
computing time etc. The parameters are set just the same as the above subsection
except γ and σ , and for MPRSM, we use the same parameters as PPRSM. The codes
of the two methods are repeatedly run 20 times with different combinations of n, γ

and σ , and the numerical results are listed in Table 1.
As seen from Table 1, both methods are efficient in reconstructing the given sparse

signals, and they attained the solutions successfully with comparable RelErr. How-
ever, the computing time of PPRSM is obviously less than that of MPRSM, which
shows that PPRSM is faster. Meanwhile, the advantage of PPRSM becomes more
clear as the dimension n increases. Taking everything all together, we conclude
that PPRSM provides a valid approach for solving CS, and it performs better than
MPRSM.
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Table 1 Comparison of PPRSM with MPRSM

n γ σ PPRSM MPRSM

Time Iter RelErr Fun Time Iter RelErr Fun

1000 0.3 0.2 0.8602 166.9500 0.4343 0.0495 1.4289 54.7000 0.4829 0.0453

0.2 0.2 1.0524 265.8000 0.3032 0.0888 1.2908 56.8000 0.3097 0.0792

0.2 0.1 0.8180 199.6500 0.1495 0.0605 1.2930 57.1000 0.1538 0.0556

Average 0.9102 210.8000 – – 1.3376 56.2000 – –

2000 0.3 0.2 4.2925 170.3500 0.9491 0.0430 9.8045 53.0000 0.9550 0.0485

0.2 0.2 4.8570 274.6500 0.6035 0.0814 9.2580 65.0000 0.6812 0.0788

0.2 0.1 3.5470 177.0000 0.3205 0.0598 8.9925 53.0000 0.3373 0.0559

Average 4.2322 207.3333 – – 9.3517 57.0000 – –

5 Conclusions

In this paper, based on the MPRSM recently proposed by He et al., we developed a
new PPRSM, which is free from the computation of the inverse of large matrix. Under
mild conditions, we proved its global convergence. Numerical results of CS indicate
that the new method performs better than MPRSM. In the future, we will investigate
the application of the PRSM to dual problems of CS, and design some more efficient
solvers.
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